
KSC-DM-3265

COMPUTATION OF GENERALIZED MODAL
LOADS IN AN ACOUSTIC FIELD

DEFINED BY A DISTRIBUTION OF
CORRELATED PRESSURES

\

AUGUST 1989

ENGINEERING DEVELOPMENT DIRECTORATE



KSC-DM-3265

COMPUTATION OF GENERALIZED MODAL

LOADS IN AN ACOUSTIC FIELDk

DEFINED BY A DISTRIBUTION OF

CORRELATED PRESSURES

AUGUST 1989

JOHN F. KENNEDY SPACE CENTER, NASA



KSC-DM-3265

COMPUTATION OF GENERALIZED MODAL
LOADS IN AN ACOUSTIC FIELD

DEFINED BY A DISTRIBUTION OF
CORRELATED PRESSURES

PREPARED BY:

V. Sepcenko '_

Boeing Aerospace Operations

, _J. L. _ckhoff (_'i

Boeing Aerospace Ope--f'ations

CONCURRENCE:
F. N. Lin

Chief, Analysis Section

APPROVED BY_

(,,'L.(,_." S_hultz _l

Chief, Launch Structures

Section

AUGUST 1989



KSC-DM-3265

FOREWORD

This report is an aid to designers of structures with large area-to-mass
ratios that are subject to high acoustic pressures during rocket launches. It

provides a means of determining generalized modal loads using AJ-coefficients

defined by the design procedure documented in KSC-DM-3147. AJ-coefficients
are a measure of a vibroacoustic coupling between the structure and the

acoustic field.
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reference area in the y.direction
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cantilever span

Director Mechanical Engineering

distance from the CPD to the support
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inch to the fourth power
joint acceptance in the x direction

joint acceptance in the y direction
loaded span number

John F. Kennedy Space Center
span

total length of a cantilevered beam
pound-inch squared

pound-second squared per inch squared

pound per square inch

launch complex
limit

generalized modal mass
uniformaly distributed mass
maximum

maximum value of arguments

equivalent uniformaly distributed mass
minimum value of arguments

response bending moment
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SECTIONI

INTRODUCTION

During a Shuttle launch, structures in the proximity of the launch pad are
subjected to acoustic pressures generated by rocket exhausts. The design of
somestructures, particularly those having a large area-to-mass ratio, is
governed by the launch-generated acoustic environment, a relatively short but
very intense pressure transient.

A procedure documentedin KSC-DM-3147,Procedure and Criteria for Conducting a
DynamicResponseAnalysis of Orbiter Weather Protection System on LC-39BFixed
Service Structure, was developed to calculate the peak dynamic response of a
normal vibration modeof a structure to an input transient. The procedure is
based on modal parameters of the structure, response spectra to acoustic pres-
sures, and a definition of acoustic field by meansof pressure correlation
lengths. Modal parameters and the area of correlated pressures boundedby
pressure correlation lengths are a prerequisite to ca]culations of generalized

modal loads required as input to response spectra for a consequent estimate of

peak responses.

Generalized modal loads are defined by means of AJ-coefficients, which are a

measure of a vibroacoustic coupling between the structure and the acoustic

field. The stronger the vibroacoustic coupling iS, the higher the vibration
of the structure in the coupled mode, and vice versa. Thus, an accurate esti-

mate of AJ for each vibration mode is essential to calculations of dynamic

response. Even for a structure of an average complexity, calculations of AJ-

coefficients may become a cumbersome task because existing dynamic analysis

codes do not have the capability to automatically account for all parameters
leading to the computation of the required extreme values of AJ's. These

coefficients depend on a surface integral of the product between modal dis-

placements and the correlated pressure distribution, a function of pressure

correlation lengths that depend upon a particular acoustic field and the

resonance frequency of the mode. The relative position between the mode and

the center of distribution affects variable integral limits and the values of
AJ-coefficients.

A position resulting in the extreme value of AJ and in the highest dynamic

response of a mode may not be obvious from an examination of integrand con-

stituents and variable integral limits. Particularly in vibration n_des where
modal displacements of the surface under an acoustic load change signs in re-

lation to the outward surface normal, a proper optimization of the load posi-

tion becomes critical and, if not perfor_d, may lead to significant dif-

ferences (by factors exceeding 100 percent) in the estimate of a peak dynamic
response. Generally, a different position of correlated pressure distribution

corresponds to each vibration mode, resulting in the strongest vibroacoustic

coupling and the highest response.
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An example of the required optimization of the load position is a case of the

fundamental mode of a three-span continuous beam and/or a case of the third

mode of a simply supported beam, illustrated in figure 1-i. When the pressure

correlation length in the direction of the beam span is equal to three to five

times the distance between nodal points, then the position of the distribution
center relative to the mode becomes critical to the estimate of AJ-coeffi-

cients. The extreme value of AJ occurs when the center of correlated pressure
distribution (load center) is located near the end nodal point (the end sup-

port of a three-span beam), a load position that is certainly not apparent.

If the load position is not optimized and the load center is located anywhere

near and between the second and the third nodal points (near and within the

middle span of a three-span beam), the value of AJ becomes substantially lower

than the extreme value, generally below 50 percent of the extreme. An under-

estimate of response for fundamental modes of structural components may result

in failure of the co_onents in a launch environment because design safety
factors are usually near or below a factor of two.

This example of how sensitive computations of AJ-coefficients to load position

may become is typical in multispan structures. An exact solution for AJ-

coefficients of a three-equal-span continuous beam is provided in this re-

port. It allows a user to obtain a numerical co_arison between the exact
solution and the output of a dynamic analysis code.

This report presents diagrams for simple and multispan continuous beams from

which corresponding AJ-coefficients can be calculated. The diagrams are

applicable to fundamental and higher modes. Conditions and requirements for a

valid application are stated in the presented derivation, either explicitly or
by means of cited assumptions required to perform numerical computations.

While many vibration modes are excited in a wide frequency band acoustic

field, stress-strain extremes governing a design occur mainly in a single

fundamental mode of each structural component.

Applications may be extended to a grid of beam-type structures and to plates.

The use of continuous versus simple beams in a grid results in a significant

reduction of dynamic response because of two effects. The first effect is a
decrease of vibroacoustic coupling reflected in lower AJ-coefficients. A com-

parison between diagrams for simple and continuous beams proves the advantage

offered by the continuity. The second effect is an increase of generalized

modal mass (M in AJ/M factor) in direct proportion to the number of continuous

spans. Thus, a multifold reduction of response can be achieved by imple-

menting a structural continuity.
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The beam is assumed to have a uniformly distributed mass (m) and constant

stiffness (El).

CL SYMMETRY (Load positions are shown on the left

i from Cc symmetry only. )

__ First mode ofa(1= span), or athree'span beam

- L = 3_ _ thlrdmode of a simply supportedbeam with a span L = 31.

__0 _ e _ O. 1251
I

r Pressure Correlation Length -

Position of correlated pressure dist-

ribution (CPD) yielding an extreme

AJ-coefficient

Me - 1.51 =i

CPD CENTERS

Positions of correlated pressure
distributions (0.881_e _ 1.51).

Yield AJ-coefficients which are

substantially lower than the
extreme. Differences may exceed

a factor of two.

L J

Horizontal scale represents a case X = 41.

Figure 1-I. Effect of Load Position (CPD Center) on AJ-Coefficients,
a Measure of Vibroacoustic Coupling
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SECTION II

PROBLEM DEFINITION

2

Utilization of response spectra, Y=q/(AJ/M/_n), to acoustic pressures, p(t),

in an application to the analysis of peak structural responses, requires a

computation of a generalized modal load, G(t)=AJp(t), for each normal mode of

a vibrating structure. The time history of acoustic pressures, p(t), is
assumed to be known from measurements taken in the acoustic field where the

structure is located. Generally, a multitude of measurements is required for

a proper definition of all basic parameters of an acoustic field. In the

following equations, it is assumed that measurements are available and

required parameters are defined, so that the mathematical formulation can

reference them as if they were obtained from a single set of measurements.

Response spectra and pressure correlation lengths (PCL's) are assumed to be

available for the frequency range containing resonance frequencies of all

normal modes considered in the analysis. Computations of generalized modal

loads are then reduced to the problem of estimating AJ-coefficients for each

normal mode, and peak response modal coordinates, q's, are calculated from

response spectra:

2

q = Y(AJ/M/_n)

The equation defining AJ for a mode of a planar structure in x,y plane is:

AJ = _ @(x,y)P(x,y)dA

J
Ai

(1)

where:

@(x,y) is normal mode displacements perpendicular to the x,y plane.

P(x,y) is the general form of the distribution of correlated pressures

in the x,y plane and within the correlation area, Ap. Implic-
itly, distribution is also a parametric function of the reso-

nance frequency, fn, of the mode _(x,y). Condition O<P(x,y)<l
limits the values of the distribution.

Ai is an area defining the extent of the integral. It is equal to

the overlapping area between the pressure correlation area, Ap,

and the structural area, As, exposed to acoustic pressures. By

defining an overlap, Ai strongly depends on the position of the
center of correlated pressure distribution relative to the

structure and, thus, relative to modal displacements.

The coordinates of the distribution center, a and b, satisfy condition

P(a,b)=l. However, a and b are also independent parameters that must be

varied to yield an extreme value of AJ. Therefore, P(x,y) must be defined

2-1
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relative to its center while, in a homogeneousacoustic field, the center may
be positioned anywhere on the surface of the structure. In the local coordi-
nates u=x-a and v=y-b, the definition of distribution relative to its center
becomes:

P(x,y) = P(a+u,b+v) = Puv(U,V) (2)

with limits on variation of u and v:

-Xx/2 < u < Xx/2 and -_y/2 < v < Ly/2 (3)

where X x and Ly are pressure correlation lengths in the direction of the x and
y axes.

The equation:

Puv(U,V) = O (4)

defines a contour of the pressure correlation area, Ap, in the x,y plane.

Distribution Puv(U,V) is zero everywhere on and outside of this contour.

Because pressure correlation lengths, Xx and Xy, are obtained experimentally
from measurements of coherence and phase between available sensor pairs (see

KSC-DM-3147, Appendix B) and because the number of measurements is limited, a

verification of the contour shape where Puv(U,v)=O was not possible. The con-

tour is assumed to be an ellipse with axes Xx and _y. The elliptic contour
introduces a constraint on the allowable varTation of local coordinates u and

v that is more stringent than (3):

22 22 .22

4XyU + 4},xV _ },x},y (5)

Consequently for any point with coordinates u,v, new variables (_, },, r) are

defined:

L ky " "'x

Note that: for v = O, },= }'x

; r = ±(u 2 + v2) I/2 (6)

for u = O, lim _ = Xy
u _0

Then, correlated pressure distribution (CPD) is explicitly defined:

v, ÷co o (7)

with a constraint

2 2 (8)
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Which ensures that point u,v remains inside the contour of the correlated
pressure area. Constraint (8) is equivalent to and replaces (5). The sign of
r in (6) is irrelevant to the definition of Puv(U,V).

The contour of the correlation area was assumedto be an ellipse resulting in
the smallest value of the correlation area (min Ap), but not necessarily in a
lowering of AJ in (1). An assumption of a rectangular contour with sides Xx
andXy results in the largest value of the correlation area (max Ap). The
corresponding distribution becomes:

Puv(U,V) = _ + cos 1 + cos (9)Ty!
with the constraint on the variation of u and v provided by (3). The form of

(9) is equivalent to a definition of the CPD by means of two separate distri-

butions (separation of variables) along each coordinate axis:

Puv(U,V) = Pu(u)Pv(v) (i0)

Bracketing of the extents of CPD's by (7) and (9) is not expected to have a

significant effect on AJ.

At this point, all constituents of AJ in (1) are formally defined. _(x,y) is

known from either the finite element model (FEM) or from experimental modal

analysis. Puv(U,V) is defined by either (7) or (9) and by corresponding con-
straints in (8) or (3). By locating the center of CPD at a point S(a,b) and

by applying a coordinate transformation

u = x-a , v = y-b (11)

to either_(x,y) -,@uv(U,V) or to Puv(U,V)-'P(x,y) so that both functions and
their constraints are expressed in the same coordinates, the extent of the

integral, the area Ai, can be defined. An additional constraint is imposed on
the allowable variation of integrand coordinates by the choice of the point

S(a,b). This constraint contains previously defined (8) or (3) by requiring
that integrand coordinates be contained within the contour of the overlap area

Ai. An illustration of this problem is shown in figure 2-1.

The integration of (I) can be performed in either the x,y or u,v coordinates
and a value of AJ can be calculated. This value becomes a function of coor-

dinates of the point S(a,b) that was selected by an essentially arbitrary

choice. In order for AJ to become a required extreme, it must satisfy two
conditions:

8AJ = BAJ = 0 (12)
Ba Bb
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Center of CPD v

at S(a,b) _ ,

Y

_cture contour and area As.

Mode _(x,y) is defined within As.

CPD contour and area Ap.

P(x,y)=Puv(U,V) is defined within
area Ap.

P(x,y)=0 is outside of the CPD
contour.

In a known acoustic field,

Xx and_y are functions of the
resonance frequency of the

mode _(x,y).

_-- Overlap between As and Ap defines Ai.

Probl era:
/-

AJ "l +(x,y) P(x,y) dA
J
Ai

Find a position of S(a,b) relative to the

mode _(x,y) such that AJ becomes an
extreme [maximum or minimum depending on

the slgn of _(x,y)].

AJ is a measure of vibroacoustic coupling.

Figure 2-1. Illustration of a Vibroacoustic Coupling for a
Planar Structure

2-4



KSC-DM-3265

For a general case of a mode, conditions (12) present a computational problem
that, sofar, remains unresolved. With few exceptions (a case of very simple
modeswhere a modehas the samesign within the contour of As or where Ap>>As)
the choice of S(a,b) that satisfies (12) is far from being obvious.

A strategy to find S(a,b) satisfying (12) mayuse a lengthy technique of a
single parameter variation; for example, parameter a is varied until an ex-
treme where BAJ/Ba_O is found at a=al • Then the second parameter b is varied
and another extreme where BAJ/Bb_0 is found at b=b1. The entire process can
be repeated as many times as necessary to obtain an acceptable convergence.
The strategy mayappear faultless and, perhaps, acceptable if performed by a
computer code.

Aside from the fact that such an optimization procedure does not exist in

dynamic analysis codes, there will be a serious caveat if such strategy were

developed. The point S(al,bl), where conditions (12) are satisfied, may de-
fine a local extreme of AJ rather than an absolute extreme. Particularly in

asymmetric structures where a mode asymmetry may be caused by the configura-

tion, placement of supports, mass, or stiffness distributions, the integrand

@(x,y)P(x,y) can have local peaks that may occur within almost any region

containing the center of CPD.

The problem of multiple extremes may occu_ in the fundamental modes of struc-

tural components and is certain to occur in modes higher than fundamental

modes. Examples can be found even in simple fundamental modes of multispan
continuous beams. Fortunately, the absolute extremes are discernable in these

cases. An examination of the diagrams in appendixes A and B provides a posi-

tion of the CPD center along a single axis, either the coordinate S(al,0)

along the x-axis or the coordinate S(O,b I) along the y-axis, which yields an
absolute extreme of AJ. If a mode of a structure resembles modes of con-

tinuous beams, then the presented diagrams may be helpful to analysts and de-

signers in their task to establish a load position resulting in the absolute
extreme of the AJ-coefficient for such a mode.

An important application case occurs whenever the mode _(x,y) may be approx-

imated in the form of separated variables. In such a case, the estimate of AJ

may be obtained as a product of two separate estimates and, perhaps, using the

diagrams presented in appendixes A and B.

If

@(x,y) =¢uv(U,V) =@u(u)(_v(v) (1.1)

Then using form (10) for Puv(U,V) and considering dA=dudv:

AJ =fA_U(U)Pu(u)du_Ov(V)Pv(V)dVAv

(1.2)
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A piece-wise approximation of the Ai contour is always possible to ensure that
Au-Au(u) and Av--Av(V). Then each integral in (1.2) can be evaluated sepa-
rately:

AxJx =_u(u)Pu(u)du and AyJy =_A_V(V)Pv(v)dv
Au

(1.3)

so that:

AJ = AxAyJxJy (1.4)

If the approximation (1.1) is possible, then the coordinates of the point

S(a,b) where AJ becomes an extreme can be established from a separate exami-

nation of each component function, _u(U) and_v(V). This conclusion directly
follows from (1.4) because (12) now becomes:

i)AJ = AyJy B(AxJx)aa= 0 when a(AxJx)Ba= 0 (12a)

aAJ B(Ayjy) = 0 when B(AyJy) = 0 (12b)
_T = AxJx Bb ab

When the mode shapes become sufficiently complex, the approximation by (1.1)

should be attempted, at least for the purpose of establishing the position of
the CPD center where AJ becomes an extreme.

2-6
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SECTIONIII

SOLUTIONFORA UNIFORMCONTINUOUSBEAMWITHEQUALSPANS

The example presented in this section is, perhaps, the simplest case in which

one can obtain an explicit solution for AJ-coefficients by a direct integra-
tion of (1) and without recourse to FEM's and a numerical integration. The

derivation of the explicit solution is documented in every detail and only a

few cumbersome algebraic operations are omitted.

Variables defining a one-dimension problem are shown in figure 3-1. A listing

of indefinite integrals used in the derivation is shown in figure 3-2 for
reference.

The origin of the x,y coordinate system is located at midspan of the "loaded"

span containing the center of CPD. The general solution is valid for any lo-
cation of the CPD center - it is a function of integral limits defined by the

overlap area Ai. The concept of the "loaded" span is introduced as a con-

venience for future reference and presentation of results.

In the x,y system:

¢(x,y) = _(x) = cos _x (13)
1

Thus the solution will be valid for a strip of unit width in the y-direction.

The mode @(x) is normalized to have a maximum displacement of one unit. This

defines a corresponding generalized modal mass of a uniform (m and El are con-

stants) continuous beam, M=1/2 nml, with n equal spans, each of length I. The

solution will also be valid for higher than the fundamental mode, in which

case l is the distance between nodal points and n is the total number of half

cycles of cosine function representing the mode (n = mode number for a simply

supported beam).

A definite normalization of the mode _(x) is necessary in order to calculate

uniquely defined AJ-coefficients. If the mode were normalized to an amplitude

_oO, then:

a. @(x) = @o cos xx . Mo = 1@2 nml = @2M
l ' _ 0 0

b.

C.

Presented AJ-coefficients would require a multiplier _o-

2

Corresponding AJ/M and the response modal coordinate q=Y(AJ/M/_ n)
would contain a multiplier 1/@o. However, the resulting peak
response modal displacement (response amplitude) Z=q-@(x) is indepen-

dent from @o, and so are all other response quantities (stresses,
reactions, etc.).

The above relations should be kept in mind whenever a mode is not normalized
to the form assumed in (13).

3-1
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A continuous beam with pinned end supports. The beam is assumed to have a
uniformly distributed mass m (Ib-sec2/in 2) and a constant stiffness El

(Ib-inZ).

Total number of equal spans is n.

_(x)

_(x) : cos

..... i _I_

._B Loaded span (contains CPD center}

number K (K = 1, 2...n)
CPD center Pu u)

at s(-a,o) .,__..
(a>o toward-x)

Correlated Pressure Distribution (CPD)

( ).,,.,.cos__;,u,
---,h X/2 X is a function of mode resonance frequency

X _7 (in a particular acoustic field.).

Pressure Correlation Length

First mode resonsance frequency (undamped): f = _-_2 J uE-_I (Hz)

Origin of coordinate system _,x is located at mldspan of the loaded span no. K.

First bending mode: @(x) = cos -_
1

Limits on x :-(K-1)l_-.x_(n- K +1)1

When the mode is normalized to have a maximum displacement of one unit

(1 inch), then the generalized modal mass, M, is equal to one-half of the
total mass:

M = --Inml
2

Define: = = _a and 0 - _- parameters of an explicit solution.
l l

Figure 3-1. Parameters for Calculation of AJ-Coefficients for a
Continuous Beam
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Indefinite integrals used in derivation:

f - cos axsin axdx = T1

cos axdx = 1 sin ax

lx - 1 sin 2axsin2 axdx = 2 4-a

I x + 1 sin 2axcos 2 axdx = -_ 4-_

sin ax cos ax dx =Lsin2 ax2a

For lat _: Ibl:

fsin ax cos bxdx = - cos (a+b)x _ cos (a-b)x2(a+b)- " 2(a-b)

f cos ax cos bxdx =
sin (a-b)x + sin (a+b)x

2(a-b) 2(a+b)

f sin ax sin bxdx =
sin (a-b)x _ sin (a+b)x

2(a-b) 2(a+b)

Figure 3-2. Listing of Indefinite Integrals Used in the Derivation
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If the center of CPD is selected at point S(-a,O}, then:

u : a+x ; x : u-a ; dx = du (14)

If the integration of (1) is performed in the local u coordinate and variables

are transformed accordingly by (14):

¢ (x,y)-¢uv(U,V)= _u(U): cos
x(u-a)

_u(U) = cos _acos _u+ sin _asin _u
1 I 1 I

The integrand in (1) becomes:

= 1 cos _a [cos _u + cos _u cos 2_u]_u(u)Pu(U} _ _ _ _ X

(15)

(16)

+I_ sin__=aFsin___u+ sin___ucos _2-_u]
2 1 L 1 I _,]

(17)

There are two constraints on the allowable variation of u. The first is

imposed by the extent of the structure (sa_ as the constraint by As):

a K + 1 u a + n - K + 1 (18)
T - )<T_T

The second is imposed by the extent of the pressure correlation length X (same

as the constraint by Ap):

_ }, u X
z--T< T < -_i- (19)

Where K is the number of the span containing the CPD center (counting from

left to right, in the direction of the +x-axis).

The overlap between constraints (18) and (19) defines lower and upper limits

of the integral (i), the same as the constraint provide by Ai.

UU

_(x,y)P(x,y)dA =_" _u(U)Pu(U)dU = AJ

Ai Ul

(la)
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Where uI is the larger (considering signs) value between:

__ (20)
l(_- K + ½_and - 2

uu is the smaller value between:

II_+ n- K +½1and +-_2 (21)

At this point, all constituents of (1) and (la) are defined by (17), (20), and

(21) and AJ can be calculated explicitly by using pertinent integrals from

figure 3-2. Before this is done, there remain a few aspects that require

clarification. These are presented next.

0nly the total value of an AJ coefficient that is both required and sufficient

for intended application in response spectra can be calculated. Neither A nor
J from AJ can be separated without introducing a convention of how to do it.

In the analysis of a steady-state response to random acoustic pressures by

means of input power spectra, a concept of Joint Acceptance, usually desig-

nated by the symbol J(, is introduced. There are tables and diagrams
depicting J_ for fundamental and higher modes of single-span structures such

as beams, plates, etc. Calculated quantity is actually (AJ)2 where A is
assumed to be the total area of the structure (a single span only) so that j2

can be uniquely defined. In order to remain compatible with the concept of

Joint Acceptance and in order to eliminate the dependence of J upon the span

length l, it is assumed that A=l. This convention, actually a normalization,

allows a presentation of J in the form of a nondimensional coefficient that

has the same physical meaning as the square root of Joint Acceptance. In the

following equations, AJ and IJ are used interchangeably to denote a product of

two defined quantities.

A general formula for the integral in (la) contains indeterminate terms of the

type 0/0, when X=21 and when _=0. The last one is a trival case of zero load

when a corresponding AJ=O. The case _=21 requires a different formula for J
which does not contain indeterminate terms.

In order to simplify an already cumbersome explicit formula for J, the follow-

ing definitions are used:

==_, _=_, X = Ull ' Y = uul

C = _(_- 2), D = x(/3+ 2) (22)
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Then, constraints on uI and Uu, (20) and (21), becomeconstraints on X and Y:

X = MAX<-_-, _- K ++); Y = MIN(_, _ + n- K ++) (23)

where K=l,2...n

For ##=0 and ##=2

= I_ uuJ T @u(u)Pu(u)du =

Ul

F "I

cos=: Isin =Y - sin + sin cY - sin cx + sin DY - sin DX|
2 L 2c 2D J

-sin_=2 [c°s xY - c°s_X +c°s CY - c°s CX + c°s DY 2DC°SDX]e 2C

For 13= 2

(24)

J =c°s'_'_ [ sin _Y - sin:x + sin 2_Y - sin2_X+_('Y-X)]29 4 2

- sin_: [ c°s_Y - c°s_x + c°s 2_Y "c°s2_X]2_ 4
(25)

For #:0, J=O
(26)

Explicit equations (24) through (26), definitions (22) and constraints (23)

complete the solution of equation (1) for the case of a uniform continuous

beam with equal spans.

The examples in appendix A contain calculated J-coefflclents ranging from the
case of a single span beam (a trivial case included mainly for a comparison)

to the case of a five-span continuous beam which appears to represent the

largest number of continuous spans encountered in practice. The accompanying

text on the plots provides an explanation of the basic plot parameters. The

user is also referred to figure 3-1, which depicts plot parameters.
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SECTION IV

AN EXTENSION TO SPECIAL CASES

The solution obtained in Section Ill can be extended to a few special cases:

a. A simply supported beam with two equal cantilevers

b. A free-free beam

c. A single cantilever

Extension of the existing solution requires only a few simple modifications in

the formulation of constraints on the integral limits and an addition of a

constant term to the equation defining the fundamental mode of case struc-

tures. It should be noted that new solutions are approximate, although quite

accurate, because they are based on an assumed mode shape rather than on an

exact solution for the mode. While exact solutions exist, their formulation

contains both trigonometric and hyperbolic functions so that the roots of

characteristic equation which define resonance frequencies cannot be obtained

explicitly but only by numerical methods. A check of the accuracy of an

assumed mode solution may be based on a comparison between fundamental reso-
nance frequencies obtained from the exact solution and an approximate solu-

tion. Such a check shows that for a free-free beam (a particular case of a

simply supported beam with equal cantilevers) the error is approximately 1.3

percent. When cantilevers increase relative to the midspan, in the limiting

case of the midspan length approaching zero (a case of two equal cantilevers
with a common fixed end), the error increases to a maximum of 4.1 percent.

Thus, within the entire range of the approximate solution, the error from the

approximation remains within acceptable limits.

Figure 4-1 shows a new configuration and the variables defining the extension

of the previous solution to special cases considered in this report. The

assumed fundamental bending mode is:

@(x) = cos _x _ sin_ =_SB(X) - F (27)
L

where

¢SB(X) = cos ___xx
L

is the first bending mode of a simply sup-

ported beam with the span L. The form of

@SB(X) is identical to that of _(x) in (13)
when l is substituted by the new variable

L=l+2d = the total length of the beam (center

span and two cantilevers). The solution for

J=JsB, when the mode is @SB(X), I"
already provided by equations (22)Sthrough

(26) after the substitution of l by L is made.
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A simply supported beam with two equal cantilevers, beam is assumed to have a
unifor?ly distributed mass M (Ib-sec2/in2) and a constant stiffness EI
(Ib-lnZ)

,_(x)
First (fundamental) mode

- -F,3-

v _ L

CPD center

at S(-a,O)

I

p v

Pressure Correlation Length

_f _(x)= cos _-_- sinx,

K, +x

Ld_ ___L = uni t ampl itude
d+l+d

Let7 =_and 0_,_½

, = 0 :.simply supported beam

, = 0.224 =.free-free beam

7 = 0.5 =.two cantilevers

},is a fbnctlon of the mode

resonance frequency

First mode undamped resonance frequency (by Raylelgh energy method) is:

" - -- --._ _ (Hz)
2L2 V m • 2L2

Generalized modal mass: M = mL [I __B sin,,+ 2sin2,,]2

a and fl=Define: _ =

Figure 4-1. Configuration and Parameters for Calculation of

AJ-Coefficients in a Case of a Simply Supported Beam With Two
Equal Cantilevers
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F = sin_/ is a constant in the case of a particular
structure. The new variable, _, defines a
ratio between the cantilever length, d, and
the total length, L. As note_ in figure 4-1,
each value of ? defines a different struc-
ture. Consequently, J-coefficients for dif-
ferent structures are not directly comparable.

@(x) in (27) represents a superposition of two modes:@SB(X) (a bending
mode) and F (a translation mode). Both modeshave the sameresonance fre-
quency. Consequently, the J-coefficient for @(x) becomesa sum (a super-
position) of two coefficients, JSB and JF, that correspond to@sB(x) and
F modes. Such a summation is valid, provided that JF is referenced to the
sameA=L as JSB is referenced to in equations (24) and (25):

J = JSB - JF (28)

The sameresult as (28) can be obtained by using @(x) in (27) and by repeating
the sameprocedure outlined in equations (141 through (26). The chosen route
is simplier.

This paragraph provides an explicit definition for the generalized modal mass,
M, for the mode_(x). The componentmode_SB(X) is normalized to the unit
maximumdisplacement at x=O. The amplitude of the second componentmode, F,
is a function of parameter _. Unlike the case of a continuous beamwith equal
spans where M is equal to one-half the total mass, the generalized modal mass
and the resonance frequency of a cantilevered beambecomefunctions of the
parameter ?:

L/2

M =_ @2(x)mdx= mL[1___ -8sin,___ + 2 sin2,_]
-L/2

(29)

If an "equivalent" uniformly distrubuted mass

Meq : 2ML

is introduced, then the fundamental resonance frequency of a cantilevered beam

attains the same form as the fundamental resonance of a simply supported beam:

: - E_: Ir _ (301f 2-i q T.-

New parameters in (22) are now defined in terms of L:

_=a "C ' # = , X = Ul Uuz-,Y=_ L
(22a )
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The form of parameters C and D in (22) remains unchanged. The constraints on
X and Y become:

,)X = MAX - , = -_ , -_
(23a)

In terms of the parameters of (22a) and constraints of (23a), equations (24)

through (26) now define JSB. The equation for the remaining term JF in
(28) is:

Uu

JF T 7
U l

(31)

Equations (28), (22a), (23a), (24) through (26), and (31) complete the ex-

plicit solution for J-coefficients of a cantilevered beam and a free-free

(_=0.224) beam. A comparison between J-coefficients for cantilevered beams
with the same total length L is not meaningful because the values of corre-

sponding M's in (29) and f's in (30) are variable functions of the parameter

The solution for a single cantilever with the span d, for example the left

cantilever in figure 4-1, is obtained from the proceeding solution by setting
_/=1/2 and by constraining the Y-extent of the CPD load to:

The corresponding generalized modal mass and the fundamental resonance fre-
quency are (approximate error 4.1 percent in f) from (29):

,,,= md2 [3 - 8_] _ 0.227md

The exact solution yields M=O.25md (error _ 9.3 percent) from (30):

f = 0.583 EE_I

d2 VM

(The exact coefficient is 0.56 instead of 0.583.) Then, using (28) and L:2d:

AJ = LJ = L(JsB - JF) = 2d(JsB - JF) = dJc (32)

and Jc = 2(JSB - JF) (28a)

Here, Jc is the J-coefficient for a single cantilever, referenced to the

cantilever span d. All parameters in (22a) entering computations of JSB and

JF) remain defined by L=2d. Thus, horizontal plot axis, 8, defines a ratio
between the pressure correlation length and two cantilever lengths. These

special cases are shown in appendix B.
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SECTIONV

SUMMARYANDRECOMMENDATIONS

The existing dynamic analysis codes do not have the capability to utilize re-
cently developed methods involving response spectra and the distributions of
correlated pressures in the analysis of structural responses to randomacous-
tic loads. The implementation of such a capability within an existing code
would require a substantial modification of the code that may be far beyond
what the code structure allows to be accomplished by a user. Perhaps, only
the originator of the code mayhave the capability to implement such modifica-
tions.

A different route should be considered. This route would use either an exist-

ing FEM code or a modal analysis test to establish the modal parameters of a

structure. The capability to have a dual source of modal parameters is essen-
tial for a test/analysis correlation and for a dynamic analysis of structures

where only the test can establish modal parameters. A separate code should be

developed for the analysis of structural response to random acoustic loads

occurring during a launch. The code would input a structure geometry, modal

parameters, pressure correlation lengths, and response spectra. The input of

geometry and modal parameters should be made by the transfer, via a magnetic

tape or other media, from the modal analysis code to the new response analysis

code. For a general case of a three-dimensional structure, a corresponding
three-dimensional definition of the contours of correlated pressure distribu-

tions over the structure surface must be obtained from the ellipsoid of pres-

sure correlation lengths. The original grid of nodal points, which was gener-

ated by the requirements of modal analysis, may have to be either replaced or
appended by a high-density grid where the density is governed by the non-

uniformity of the correlated pressure distribution and by the requirement to

have a reasonably small delta-A associated with each grid point to ensure the

accuracy of a numerical integration. Modal vectors will also require a trans-

formation from the modal analysis grid to the high-density pressure distribu-

tion grid. Then, the estimate of AJ extremes and peak response modal coor-

dinates can be performed in the high-density grid coordinates. Computed modal
coordinates would be either input back into the modal analysis code for the

calculation of peak responses (stresses, displacements, etc.) or the same task

may be accomplished within the response analysis code, in which case addi-

tional inputs, such as matrices of internal stresses due to normal modes, must

be obtained from the modal analysis code.

In the above outline, the optimization of the load position leading to an
absolute extreme of AJ-coefficients and modal coordinates may never become

entirely automated, and the problem is not expected to be solved for a general
case. Because each mode requires a different load position for the extreme

response in that mode, the initial positioning of the CPD center may have to

be left to the judgement of the user, followed by some limited programmed

optimization. A graphic display of the mode and an interactive input of the

initial load position would certainly facilitate the choice of input.
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In this scheme, a separate response analysis code provides a definite advan-
tage before a general modal analysis code. However, the communication prob-
lems between the two codes involving data transfers, stops and restarts, are
not expected to be resolved without the involvement of personnel who origi-
nated and presently maintain the general modal analysis code.

A development of the capability to perform a response analysis for a general
case of a structural configuration would require substantial effort and time.
Perhaps, it should be accomplished in steps of a gradually increasing com-
plexity by limiting the initial development to only certain types of struc-
tures, such as planar structures, etc.

Meanwhile, in order to satisfy the immediate needs of design groups, designers
must resort to approximations, such as breaking downa structure into simpler
components for which adequate solutions either already exist or can be ob-
tained by meansof simple programs and diagrams like those presented in this
report.
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APPENDIX A

J-COEFFICIENTS FOR ONE, TWO, THREE, FOUR, AND FIVE SPAN BEAMS
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APPENDIX B

J-COEFFICIENTS FOR A CANTILEVERED BEAM, A FREE-FREE BEAM,
AND A SINGLE CANTILEVER
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APPENDIX C

EXAMPLE PROBLEM FOR A THREE-SPAN CONTINUOUS BEAM

This appendix contains numerical examples illustrating the application of the

presented theory to a computation of response of a three-span continuous beam.

In the presented examples, the response spectra, pressure correlation lengths,
and modal parameters are assumed to be known. Under this assumption, the

response computations are shown. Most of the text is devoted to step-by-step

explanations of the employed procedure.
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The example of a three-span continuous beam is shown in figure C-1.

Beam parameters are:

Number of spans

Span length

Beam width

Uniform mass

n=3

l = 58.0 in (4.833 ft)

b = 7.2 in

m = 1.6814 x 10-3 Ib-sec2/in2

Material modulus of elasticity

Moment of inertia

E = 29.0 x 106 Ib/in 2

I = 0.2393 in4

Section modulus S = 0.282 in3

C.1 FIRST SINUSODIAL MODE

The resonance frequency (undamped) is:

fl .l _--LI : 30 Hz
212 _m

_I = 2_fI = 188.5 rad/sec

2

_01 = 3.553 x 104 (rad/sec)2

The generalized modal mass (mode normalized to the maximum unit displacement

at the centerline span) is:

M = _ nml = 0.1463 Ib-sec2/in
2

The area exposed to acoustic pressures (for application in the diagrams of
J-coefficients) is:

A = bl = 417.6 in2

The response spectrum ordinate for an assumed 2-percent damping (see figure

C-2) at f1=30 Hz is:

2

Y = q/(AJ/M/_oI) = 6.5

This is a maximum value from 12 launches.

Note that the median value of Y is around 4. The assumed value, Y=6.5, is the

maximum design value.
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The pressure correlation length, X, depends on the direction of the beam(see
figure C-3), whether the beamis vertical or horizontal.

C.1.1 CASEOFA VERTICALBEAM.

At fl = 30 Hz, _v _ 19 ft

#v = Xv = 3.93
1

From the diagrams of J-coefficients for a three-span continuous beam, maximum
Jv at #v occurs when the CPDcenter is locted in span no. 1:

maximumJv : 0.43 (see figure C-4)

Note that if the CPDcenter were located in span no. 2, the error in the
response estimate would exceed a factor of 4 (see figure C-5).

2
AJv/M/_1 = 417.6 x 0.43/0.1463/3.553 x 104 = 3.455 x 10-2

The response modal coordinate (modal participation factor) is:

qlv = Y = 6.5 x 3.455 x 10-2 = 0.2245

Becausethe modewas normalized to the maximumunit displacement,
qlv=O.2245 inches is the maximumvibration amplitude at the centerline span.

C.1.2 CASEOFA HORIZONTALBEAM.

At fl = 30 Hz, _h = 75 ft

_h = _h= 15.5
l

Because of a large #h, the location of the CPD center yielding a maximum Jh is

not critical, whether it is in span no. 1 or no. 2.

For the CPD center in span no. 1, Jh = 0.563 (see figure C-6).

For the CPD center in span no. 2, Jh = 0.58 (maximum) (see figure C-7).

2

AJh/M/_ I = 417.6 x 0.58/0.1463/3.553 x 104 = 4.66 x 10-2

qlh = Y = 6.5 x 4.66 x i0-2 = 0.3029
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C.1.3 FIRST BENDING _DE SUM_RY. Modal coordinates, either qlv or qlh, are

the multipliers of the normal mode no. I stress matrix. For the first mode,

_=sin(_x/l), stresses can be computed explicitly without resorting to the

FEM. Thus, the stress matrix bending moment is:

Mbl= .El a2_l : El(ax"Z _)2 sin (_x/l)

2

I_) = 2.036 x 104 Ib-in/(normal mode amplitude)Mbl (at x = I/2) = El T

For a vertical beam, the maximum response bending moment at midspan
(x=I/2) is:

_Mrblv = qlv Mbl = 0.2245 x 2.036 x 104 = 4.571 x 103 in-lb

and the maximum unit stress is:

6rblv = Mrblv/S = 4.571 x 103/0.282 = 16,209 psi

For a horizontal beam:

6rblh = qlh Mbl/S = 21,870 psi

C.2 SECOND BENDING MODE (ANTISYMMETRIC)

An approximate estimate of beam response in this mode is possible using

J-coefficient diagrams presented in this report. Note that in the following
example, J-coefficients are not those of a three-span beam.

Modal parameters are taken from the FEM [NASA Structural Analysis (NASTRAN)]

output:

Resonance frequency

Generalized modal mass

f2 = 38.45 Hz

M2 = 9.599 x 10-2 lb-sec2/in

(mode normalized to maximum unit displacement in spans no. 1 and no. 3)

_ = (2_f2) 2 = 5.836 x 104

C-12
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C.2.1 CASEOFA VERTICALBEAM.

At f2 = 38.45 Hz, Xv2 _15 ft

#v2 = Xv___22= 15 = 3.10
1 4.833

Locate the CPDcenter at midspan of span no. 1 and draw (in scale) the
correlated pressure distribution,

P(x} = i_ FI + cos 2:x- , considering that
Z L Xv2

Xv____= _B-v__._l = 1.551, as shown in figure C-8.
2 2

Write the expression for AJ, paying attention to integral limits:

Lv2/2 f I/2 +__v2/2AJ =I _2(x)P(x)dx = _2(x)P(x)dx @2(x)P(x)dx
J
-I/2 -1/2 1/2

Note that:

a. For I/2_ x_ _v2/2, @2(x) is small compared to m2(x) in span no. i.

. %v2/2

b. j O2[x)P(x)dx

1/2

will have the sign opposite to

l12m2(x)P(x)dx

-I12

C-13
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Therefore, a conservative estimate of AJ can be obtained by calculating only

the first of the two integrals:

AJ

I/2

ii_ 2(x)P(x)dx

Note that in span no. 1, _2(x) is similar to the first mode of a simply

supported beam with span I. Therefore, one can compute AJ and J from the

diagram (see figure C-9) for a simply supported beam at #v2=3.10 , Jv2=0.607.

Corresponding A=Av2 is the same as for the first mode.

2

AJv2/M2/_ 2 = 417.6 x 0.607/9.599 x 10-2/5.836 x 104 = 0.0452

The response spectrum ordinate for an assumed 2-percent damping (same plot as

for the first mode) at 38.45 Hz is Y2=9.5. Y2=9.5 is a 12-1aunch maximum.
The next highest Y is around 6.5, approximately 32 percent lower.

Response _n the second mode exceeds that in the first mode. This rather

unusual case is a consequence of small #v2 and high Y2 at launch STS-7.

From the modal stress matrix (NASTRAN output) the bending moment at the
midspan of span no. 1 is:

Mb2 = 2.385 x 104 Ib-in/(normal mode amplitude)

The response bending moment is:

Mrb2v = q2v Mb2 = 0.430 x 2.385 x 104 = 1.025 x 104 in-lb

The maximum unit stress is:

6rb2v = Mrb2----_v = 36,356 psi
S

C.2.2 CASE OF A HORIZONTAL BEAM.

At f2 = 38.45 Hz, _h2 _" 67 ft

#h2 : _h2: 13.87
1
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If the samesteps are followed as for the vertical beamand the CPDis drawn
relative to the mode, considering that:

}'h2 = 6.941
T

one finds that the entire asymmetric mode is "loaded" by a nearly uniform

distribution. If the distribution were exactly uniform, the mode could not
be excited since

31 _(x)dx = 0
0

An approximate estimate of AJ can be made by a direct computation. The CPD

center is positioned at the left support of span no. 1 because this position

results in the most nonuniform load and maximum AJ. This is shown in figure
C-I0.

At x = I/2 2:x = _l = _ = 0.2265

P(I/2) = _ [1 + cos (0.2265)]= 0.9872 = P1
L

At x = 51/2 2:x = 5__E__= 1.1325

p{51_=1 [i + cos (1.1325)] = 0.7122 = P2

\21 2

It is assumed that:

21_(x)P(x)dx = U
I

The assumption is conservative since the actual value of this integral is

negative and it would, if computed, decrease the total estimate of AJ.

3l

=_ _3 I(P1-P2)
(Aj)h b_(x)P(x)dx _ b

O

= 7.2 x _ x 58 x (0.9872 - 0.7122) = 76.6 in2
3

2

(AJ)h/M2/o_2 = 76.6/9.599 x 10-2/5.836 x 104 = 1.367 x 10-2
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q2h = Y2 (AJ = 9.5 x 1.367 x 10-2 = 0.1298

The response bending moment is:

Mrb2h = q2h Mb2 = 0.1298 x 2.385 x 104 = 3.097 x 103 in-lb

The maximum unit stress is:

6rb2h = Mrb2h = 10,981 psi
S

C.2.3 SECOND BENDING MODE SUMMARY. Estimates of modal coordinates are

approximate and conservative. For a vertical beam, J was computed from the

diagram (see figure C-9) for a single span beam. Such approximation was

possible because _v2 is small and the contribution to AJ from the center span

is negligible [small _2(x)]. For a horizontal beam, AJ was estimated directly
by calculating the integral definition of AJ. In this computation, the fol-

lowing general theorem was used (see the following illustration). The theorem
states that:

l

_ @l(X)Pl(x)dx = A_Pl(Xcg)

o

The integral is equal to the area, A_, under _l(X) times the ordinate of the

linear function, Pl(Xcq), taken at the abscissa, Xcg, corresponding to the
location of the center-of gravity of A@.
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P1(xcg)

Xcg --

/---Pl(x) Linear function in the interval
o<x<l.

1

v/_-a I _ _l(X)

I
_--X

, J
--1

Any function having the same

sign in the interval o<x<l

and "center of gravity" at

Xcg.

Area under _l(X)

Position of the
"area center"

Proof of theorem:

Pl(x) = Pl(°)( 1 -_)

lt"

A@ =Jo_l (x)dx

1 1

0 0

@l(x)xdx

I -'a/'PI(O) _l(X)dx - _l(x)xd

0 0
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=

: A@P I(Xcg)

C.3 THIRD BENDING MODE (SYMMETRIC)

This mode is a result of a mathematical solution of the eigenvalue problem.

This mode cannot be excited in the "real world." The mode is shown in figure
C-11. However, a for_l computation of J-coefficients (in order to perhaps

check the program) can be computed (approximately) using the following

procedure:

a. Locate the CPD center at the center of span no. 2.

b. Use a procedure similar to that in C.2.2, applying the theorem in
C.2.3.

CQ When calculating the area of modal displacements in spans no. 1 and

no. 3, take into consideration modal amplitudes in these spans (they

are _ 1.0).

d. Within each span, the correlated pressure distribution function

P(x) =½ [I + cos 2fx]TJ

shall be substituted by a linear approximation so that the theorem in

C.2.3 will apply.

C.4 FOURTH BENDING MODE (ANTISYMMETRIC)

This mode shape is the same as the first bending mode of a six-span beam with

the span 14=I/2=29 in=2.42 ft. The mode is shown in figure C-12. Because the
mode is antisymmetric, the critical position of the CPD center is always in

the first span. As long as X/2 (X : either vertical or horizontal PCL) does

not exceed 5x14=12.08 ft, existing diagrams of J-coefficients derived for a

five-span beam can be used.
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In this case,

A4 = b14 : bl/2 : A/2 = 208.8 in2

Mode no. 4 parameters (from NASTRAN output) are:

Resonance frequency f4 = 120 Hz

Generalized modal mass M4 = 0.1617

_ = (2_f4)2 = 5.685 x 105

Because the mode resonance, f4, exceeds the frequency range of available PCL's

and response spectra, the required values of _'s and Y4 will be extrapolated/
assumed. From a consideration of available power spectral densities (PSD's),

the value of the response spectra ordinate at 120 Hz is Y4=12 (±10 percent).

C.4.1 CASE OF A VERTICAL BEAM.

Extrapolated _v4 = 4.8 ft

From the diagram of J-coefficient for a five-span beam (see figure C-13), at

#v4=2, Jv4=0.538.
i

2

A4Jv4/M4/_ 4 = 208.8 x 0.538/0.1617/5.685 x 105 = 1.222 x 10-3

[A4J v4/M4/_24]q4v : Y4 = 12 x 1.222 x 10 -3 : 0.0147

From NASTRAN output, Mb4=-8.416x104 at approximately one-quarter of the span
("element 4" in NASTRAN ID). The bending moment at the midspan in this mode

is zero. The response bending moment at I/4 is:

Mrb4v = 8.416 x 104 x 0.0147 = 1,234 in-lb

The maximum unit stress is:

Mrb4v = 4,376 psi
6rb4v = S
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C.4.2 CASE OF A HORIZONTAL BEAM.

Extrapolated }'h4 = 15 ft

_h4 = _h4 = 6.2
14

From the diagram of a five-span beam (see figure C-13) with the CPD center in

span no. 1, Jh4 = 0.32

2

A4Jh4/M4/o_4 = 7.27 x 10-4

[A4Jh4/M4/_ _]q4h = Y4 = 8.72 x 10-3

The response bending moment at I/4 is:

Mrb4h = q4h Mb4 = 734 in-lb

The maximum unit stress is:

6rb4h = 2603 psi

C.4.3 FOURTH BENDING MODE SUMMARY.

J-coefficients for a five-span beam.
modes need to be considered.

Response was computed using

The response is diminishing. No higher

C-26


